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Abstract

Altering the fuel source from petroleum-based ultra-low sulfur diesel to biodiesel and its blends is 

considered by many to be a sustainable choice for controlling exposures to particulate material. As 

the exhaust of biodiesel/diesel blends is composed of a combination of combustion products of 

polycyclic aromatic hydrocarbons and fatty acid methyl esters, we hypothesize that 50% biodiesel/

diesel blend (BD50) exposure could induce harmful outcomes because of its ability to trigger 

oxidative damage. Here, adverse effects were compared in murine male reproductive organs after 

pharyngeal aspiration with particles generated by engine fueled with BD50 or neat petroleum 

diesel (D100). When compared with D100, exposure to BD50 significantly altered sperm integrity, 

including concentration, motility, and morphological abnormalities, as well as increasing 

testosterone levels in testes during the time course postexposure. Serum level of luteinizing 

hormone was significantly depleted only after BD50 exposure. Moreover, we observed that 

exposure to BD50 significantly increased sperm DNA fragmentation and the upregulation of 

inflammatory cytokines in the serum and testes on Day 7 postexposure when compared with 

D100. Histological evaluation of testes sections from BD50 exposure indicated more noticeable 

interstitial edema, degenerating spermatocytes, and dystrophic seminiferous tubules with arrested 

spermatogenesis. Significant differences in the level of oxidative stress assessed by accumulation 

of lipid peroxidation products and depletion of glutathione were detected on exposure to respirable 

*Correspondence to: Anna A. Shvedova, Pathology and Physiology Research Branch, and Exposure Assessment Branch, HELD, 
NIOSH, 1095 Willowdale Rd, Morgantown, WV 26505, USA. ats1@cdc.gov. 

AUTHOR CONTRIBUTIONS
E.R.K. designed the study, completed the experiments, analyzed the data, and prepared the manuscript draft with important intellectual 
input from N.Y. and A.A.S. N.Y. designed the study, completed the experiments, and analyzed the data. M.T.F. completed the 
experiments and collected the data. D.W.G. and M.R.S. performed histopathological evaluation. A.D.B. collected the diesel/biodiesel 
exhaust particles. V.E.K. designed the study. A.A.S. coordinated the study. All authors approved the final manuscript.

HHS Public Access
Author manuscript
Environ Mol Mutagen. Author manuscript; available in PMC 2016 July 15.

Published in final edited form as:
Environ Mol Mutagen. 2015 March ; 56(2): 265–276. doi:10.1002/em.21915.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



BD50 and D100. Taken together, these results indicate that exposure of mice to inhalable BD50 

caused more pronounced adverse effects on male reproductive function than diesel.
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 INTRODUCTION

The use of biodiesel (BD) or its blends with petroleum diesel (D100) is contemplated to be a 

justifiable approach to reduce occupational and environmental exposures to particulate 

matter (PM). Exposure to diesel exhaust in humans has been shown to cause a number of 

adverse health outcomes, including pulmonary, cardiovascular diseases, and cancer [Tokiwa 

and Ohnishi, 1986; Watkinson et al., 1998; Holgate et al., 2003a; Garshick et al., 2004; Mills 

et al., 2005, 2007; Rivero et al., 2005; Nemmar et al., 2007, 2009; Tornqvist et al., 2007; 

Peretz et al., 2008; Pronk et al., 2009; Sawyer et al., 2010; Hazari et al., 2011; Silverman et 

al., 2012]. Diesel exhaust particulates (DEPs) have also been reported to cause the disruption 

of male reproductive function. Prior studies have shown that DEP exposure disturbed 

spermatogenesis, resulting in reduction of daily sperm production and motility, increased 

morphological sperm abnormalities, and ultrastructural changes in Leydig cells in mice 

[Yoshida et al., 1999; Yoshida and Takeda, 2004; Izawa et al., 2008; Li et al., 2012]. In male 

rats, the regulation of testicular function was altered resulting in elevation of serum 

testosterone and reduction of luteinizing hormone (LH) and sperm production after DEP 

exposure [Watanabe and Oonuki, 1999; Tsukue et al., 2001, 2002; Izawa et al., 2007; Li et 

al., 2007, 2009b; Ramdhan et al., 2009].

On the other hand, most BD fuels are produced by the transesterification of vegetable oils 

generating fatty acid alkyl esters [Knothe et al., 2010]. The major components of these oils 

are monounsaturated oleic acid, polyunsaturated linoleic acid, and linolenic acid, which are 

prone to oxidation on combustion forming a variety of peroxides and secondary oxidation 

products [Song et al., 2000; Knothe, 2005]. Moreover, exposure to BD was found to increase 

the particle-bound volatile organic fraction of PM and carbonyl emissions [Purcell et al., 

1996; Liu et al., 2009], inducing a rise in cellular toxicity [Liu et al., 2009]. Recent studies 

demonstrate that BD or its blends are more mutagenic and increase formation of 

multinucleated cells when compared with ultralow sulfur diesel fuel (ULSD) [Ackland et al., 

2007; Bunger et al., 2007; Krahl et al., 2009; Kisin et al., 2013]. Brito et al. [2010] 

demonstrated that exposure to diesel, neat BD, and 50% biodiesel/diesel blend (BD50) 

induces acute lung inflammation. Recently, we reported that pharyngeal aspiration or 

inhalation exposure to BD exhaust causes pronounced pulmonary damage accompanied by a 

robust inflammatory response and severe oxidative stress when compared with diesel 

exhaust nanoparticles [Shvedova et al., 2013; Yanamala et al., 2013].

Diesel engine emissions from the use of diesel, or its blends with biodiesel, are highly 

complex mixtures of aerosols and gases. Most of the particles from these engine exhausts 

are of nanoscale and potentially have hundreds of chemicals absorbed onto their surfaces, 
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including known and suspected mutagens and carcinogens, for example, polycyclic aromatic 

hydrocarbons (PAH) and nitrated PAH (nPAH) [Mermelstein et al., 1981; Ohe, 1984; 

Rivedal et al., 2003; Bünger et al., 2012]. Recently, it has been shown that human exposure 

to PAHs causes alterations in male sperm quality, including morphology, concentration, and 

vitality, as well as DNA damage, thus affecting male reproductive function [Gaspari et al., 

2003; Meeker et al., 2007; Han et al., 2011; Jeng et al., 2013].

To address whether exposure to respirable BD adversely affects spermatogenesis, we 

compared the effects of BD50 and neat petroleum diesel in male C57BL6 mice. We found 

that pulmonary exposure to BD50 significantly altered sperm concentration, motility, and 

morphology. Moreover, BD50 caused upregulation of inflammatory cytokines, increase in 

testicular testosterone, and reduction of serum LH. Testicular histopathology revealed 

interstitial edema, clustering of the dystrophic seminiferous tubules with arrested 

spermatogenesis, and the presence of degenerating spermatocytes. Additionally, we 

observed that exposure to inhalable BD50 caused severe oxidative stress and DNA damage 

in mouse male reproductive organs. Here, for the first time, we demonstrate that exposure to 

respirable BD50 generates a pronounced toxicity to the male reproductive system when 

compared with diesel.

 MATERIALS AND METHODS

 Animals

Specific pathogen-free adult male C57BL/6 mice (7–8 weeks) were supplied by Jackson 

Laboratories (Bar Harbor, ME) and weighed 20.0±1.9 g when used. Animals were housed 

one mouse per cage receiving filtered high-efficiency particulate air in the Association for 

Assessment and Accreditation of Laboratory Animal Care (AAALAC) International-

accredited National Institute of Occupational and Safety Health (NIOSH) animal facility. All 

animals were acclimated in the animal facility under controlled temperature and humidity 

for 1 week prior to use. Beta Chips (Northeastern Products Corp., Warrensburg, NY) were 

used for bedding and changed weekly. Animals were supplied with water and certified chow 

7913 (Harlan Teklad, Indianapolis, IN) ad libitum, in accordance with the guidelines and 

policy set forth by the Institute of Laboratory Animal Resources, National Research 

Council. All experimental procedures were conducted in accordance with a protocol 

approved by the NIOSH Institutional Animal Care and Use Committee.

 General Experimental Design

To assess reproductive toxicity, mice were treated by repeated pharyngeal aspiration with 

suspensions of BD50 or D100 exhaust particles (15 µg/mouse/day of total carbon) in United 

States Pharmacopeia (USP) sterile water (Hospira, Lake Forest, IL). The corresponding 

control mice were administered USP sterile water. Mice were exposed twice a week for two 

consecutive weeks with a cumulative dose of 60 µg per mouse of total carbon. Specifically, 

human equivalent workplace exposure to a deposited cumulative dose of 60 µg of total 

carbon can be achieved in ~88 working weeks at allowable exposure concentration limits 

defined by MSHA (160 µg/m3 of total carbon). Calculations were performed using the 

formula published previously by our group [Yanamala et al., 2013]. Animals were weighed 
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and sacrificed on Days 7 and 28 following their last exposure. Blood samples were collected 

and kept at room temperature for 1.5 hr to allow for clotting. The samples were then 

centrifuged at 1,700g for 15 min at 4°C, and serum was separated and stored at −80° C until 

assayed for cytokine responses and LH level. Testes were removed and weighed. The right 

testis was used for histologic examination, whereas the left one was processed for 

testosterone measurements, cytokines responses, and biomarkers of oxidative stress. The 

epididymis were excised and trimmed carefully of excess tissue and fat and immediately 

weighed. The right epididymis was processed for semen analysis (sperm density, motility, 

and morphology evaluation), whereas the left epididymis was used for sperm DNA 

fragmentation screening.

 Exhaust/Emission Generation and Diesel Particulate Matter Samples Collection System

The diesel particulate matter (DPM) samples were collected at the diesel laboratory at the 

NIOSH Office of Mine Safety and Health Research. A single batch of neat corn-based fatty 

acid methyl ester (FAME) BD was acquired from Peter Cremer (Cincinnati, OH, 

NEXSOL™ BD-100), and a single batch of petroleum-based ULSD fuel was acquired from 

a local supplier. The BD50 blend was prepared at the site. The fractions of BD and ULSD 

were determined volumetrically. The samples of BD50 and D100 particulates were collected 

from the exhaust of a mechanically controlled, naturally aspirated directly injected Isuzu 

C240 (Isuzu Motors Limited, Tokyo, Japan) diesel engine equipped with a diesel oxidation 

catalytic converter (DOC, Lubrizol, New Market, ON). The engine was exercised over four 

steady-state operating conditions [Yanamala et al., 2013]. The exhaust particles originating 

from the four different loads were collected and combined to perform the study.

A high-volume sampling system was developed to advance the methods of collecting 

representative samples of diesel particulates. This system allows for collecting nanosized 

and ultrafine DPM aerosols in liquid media, therefore preserving the sampled aerosol to the 

highest possible level of physical and chemical characteristics. The method for the DPM 

sample collection system has been described in detail by Yanamala et al. [2013]. The 

samples collected for each of the fuels were combined and further concentrated using a 

rotating evaporator (Eppendorf Vacufuge, Hamburg, Germany). The particle suspensions 

were sonicated using a Vibra Cell (Sonics & Materials, Newtown, CT) before administering 

them to animals.

All doses of BD50 and D100 exhaust particles were standardized based on the amount of 

total carbon analyzed by NIOSH Method 5040 [NMAM, 2003; Birch, 2004] as mentioned 

previously [Yanamala et al., 2013]. Additionally, the hydrodynamic diameter of BD50 and 

D100 particulates (216 and 312 nm, respectively) was determined by dynamic light 

scattering [Yanamala et al., 2013].

 Particulate Aspiration

Mouse pharyngeal aspiration was used for particulate administration. Briefly, after 

anesthesia with a mixture of ketamine (Phoenix Pharmaceutical Inc, St. Joseph, MO) and 

xylazine (62.5 and 2.5 mg/kg subcutaneous in the abdominal area; Phoenix Pharmaceutical 

Inc, St. Joseph, MO), the mouse was placed on a board in a near vertical position, and the 
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animal’s tongue was extended with lined forceps. A suspension of BD50 or D100 exhaust 

particles (15 µg/mouse/day of total carbon, twice a week, for 2 weeks) was placed posterior 

in the throat, and the tongue held until the suspension was aspirated into the lungs. All 

particles were sterilized prior to administration. All mice from the control, BD50-, and 

D100-treated groups survived this exposure procedure and exhibited no negative behavioral 

or health outcomes.

 Levels of Oxidative Stress Markers

Oxidative damage in the testis following pulmonary exposure to BD50 or D100 was 

evaluated by the presence of hydroxynonenalhistidine (HNE-His) protein adduct and 

glutathione (GSH) level. HNE-His adducts, lipid peroxidation end products, were measured 

in tissue homogenates by ELISA using an OxiSelect™ HNE-His adduct kit (Cell Biolabs, 

San Diego, CA). The quantity of HNE-His adducts in protein samples were determined by 

comparing its absorbance with that of a known HNE-BSA standard curve.

GSH concentration in testis homogenates was determined using ThioGlo −1 (Covalent 

Associates Inc., Corvallis, OR), a maleimide reagent, which produces highly fluorescent 

adducts on its reaction with SHA groups [Shvedova et al., 2005]. Glutathione content was 

estimated by an immediate fluorescence response registered on the addition of ThioGlo™ 1 

to the testis homogenate. A standard curve was established by the addition of GSH (0.04–4.0 

µM) to 100 mM phosphate buffer (PBS, pH 7.4) containing 10 µM ThioGlo −1. The 

Synergy H1 hybrid multimode microplate reader (BioTek Instruments, Winooski, VT) was 

used for the assay of fluorescence using excitation at 388 nm and emission at 500 nm. The 

data obtained were exported and analyzed using Gen5™ data analysis software (BioTek 

Instruments).

 Epididymal Sperm Concentration and Motility

The total sperm cell counts and motility were assessed as described previously by Polyzos et 

al. [2009]. The caudal right epididymis was minced into 2 ml prewarmed M16 medium 

(Sigma-Aldrich, St. Louis, MO) and incubated at 37°C in 5% CO2 for 5 min to allow sperm 

to disperse. Sperm concentration and motility were evaluated from the same sperm cell 

suspension using an improved Neubauer hemocytometer chamber (Hausser Scientific, 

Horsham, PA). Ten microliter of the warm sperm cell suspension was loaded into the 

hemocytometer and immediately examined under microscope. About 300–400 cells per slide 

were tracked for motility assessment by scoring the number of all motile and nonmotile 

sperm in the same field.

 Epididymal Sperm Morphology

Sperm morphology was assessed as described previously by Pereira et al. [1981]. Briefly, 10 

µl of Eosin Y (Leica Microsystems, Buffalo Grove, IL) was mixed with 90 µl of sperm 

suspension obtained from the right epididymis as described in the preceding paragraph and 

incubated for 30 min at room temperature. A drop of sperm suspension (5 µl) was smeared 

on the slide, air dried, and mounted with low-viscosity mounting medium. Sperm 

morphology was examined on bright field microscopy (Olympus Provis, B&B Microscopes, 

Pittsburgh, PA), and spermatozoa were classified as follows: sperm cells with normal 
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morphology and cells presenting abnormalities in head, neck/mid-piece, and tail. At least 

500 sperm cells were recorded for each slide under 1,000 × magnification.

 Sperm DNA Fragmentation Screening

Sperm chromatin integrity was assessed by the sperm chromatin structure assay (SCSA). 

This test provides detection of damaged DNA and altered proteins in sperm nuclei via flow 

cytometry of acridine orange stained sperm [Evenson and Melamed, 1983]. Cell suspension 

from the left caudal epididymis was prepared in M16 medium (as described above) and 

incubated for 5 min at 37°C in 5% CO2. After incubation, the sperm cells were filtered 

through a 70-µm sterile cell strainer to remove the tissues and other debris and to form a 

more uniform cell suspension. Next, the sperm cell suspension was centrifuged for 3 min at 

2,000 rcf (37°C), the supernatant was removed, and the cells were resuspended in 100 µl of 

M16 medium. The concentrated cell suspensions were immediately frozen and stored in 

liquid nitrogen until shipping to SCSA Diagnostics (Brookings, SD) for evaluation of cells 

with DNA fragmentation. The DNA fragmentation index value indicates the percent of 

sperm cells containing DNA damage.

 Histopathology of the Testis

Testes were removed and fixed with 10% buffered formaldehyde. The testes were embedded 

in paraffin and sectioned at a thickness of 5 µm on an HM 320 rotary microtone (Carl Zeiss, 

Thornwood, NY). Prepared sections were stained with hematoxylin and eosin (H&E), and 

histopathological evaluation was performed by certified pathologist. Sample identification 

was coded to ensure unbiased evaluation.

 Preparation of Tissue Homogenates

The left testis was homogenized with a tissue tearer (model 985–370, Biospec Products, 

Racine, WI) in cold PBS (pH, 7.4) for 2 min on ice. The homogenate suspensions were 

aliquoted and frozen at −80° C until processed.

 Measurement of Cytokines and Chemokines

Proinflammatory cytokines, IL-1α, IL-1β, IL-6, and TNF-α, in the serum and testes 

homogenates from mice exposed to BD50 and D100 exhaust particulates were analyzed 

using a Bio-Plex system (Bio-Rad, Hercules, CA). The concentrations were calculated using 

Bio-Plex Manager 6.1 software (Bio-Rad) based on standard curves.

 Testosterone Level in the Testes

The concentration of testosterone in the testes homogenate was determined by applying the 

competitive enzyme immunoassay technique using a BlueGene Testosterone ELISA kit 

(Antibodies-Online, Atlanta, GA). The optical density was determined using a Synergy™ 

H1 hybrid multimode microplate reader (BioTek Instruments). Using Gen5™ data analysis 

software (BioTek Instruments), the concentration of testosterone in the samples was 

determined.
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 Luteinizing Hormone Concentration in the Serum

The concentration of LH was determined using an ELISA kit from BlueGene Biotech 

(Shanghai, China). The optical density was determined using a Synergy H1 hybrid 

multimode microplate reader (BioTek Instruments, Winooski, VT). Using Gen5™ data 

analysis software (BioTek Instruments, Winooski, VT), the sample concentrations were 

calculated. Each sample was run in duplicate.

 Protein Assay

Measurements of protein in tissue homogenates from mouse testis were run using a Bio-Rad 

protein assay kit (Richmond, CA).

 Statistical Analysis

Results were compared by one-way ANOVA using all the pairwise multiple comparison 

procedures (Holm-Sidak method). All results are presented as mean + SEM. P values of less 

than 0.05 were considered to indicate statistical significant.

 RESULTS

 Proinflammatory Cytokine in Serum Following BD50 or D100 Exposures

The release of cytokines was used as a marker of proinflammatory responses in the serum of 

mice exposed to BD50 and D100 exhaust (Table I). IL-1α, IL-1β, and TNF-α in the serum 

were uniquely upregulated only after exposure to BD50 (Day 7 post-treatment). The 

elevation of TNF-1α was found to be significantly stronger in BD50 when compared with 

that of D100. The level of IL-6 was found to be significantly elevated after exposure to 

either BD50 or D100, with a stronger response from BD50. Overall, the serum levels of the 

proinflammatory cytokines following BD50 exposure were higher when compared with 

D100.

 Oxidative Stress Markers

The level of oxidative damage in the testes caused by BD50 or D100 exhaust PM was 

assessed by lipid peroxidation products and GSH (Fig. 1). Exposure to BD50 resulted in 

significant 44 and 64% accumulation of lipid peroxidation products, measured as HNE-His 

adducts, over control throughout the time course of 7 and 28 days post-treatment, 

respectively (Fig. 1A). Similarly, D100 caused significant 30 and 35% increases of HNE-His 

adducts observed on Days 7 and 28 postexposure, respectively. However, accumulation of 

lipid peroxidation products was significantly greater on exposure to BD50 when compared 

with D100 on Day 28 post-treatment. Time course of GSH depletion in the testes of mice 

exposed to BD50 revealed significant 18 and 28% decreases from control samples at 7 and 

28 days postaspiration, respectively (Fig. 1B). No significant changes in the level of GSH 

were found after exposure to D100. Additionally, alterations in the level of GSH were 

significantly different on Day 7 postexposure to DB50 and D100.
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 Epididymis Sperm Characteristics

To characterize the impact of BD50 or D100 treatment on the male reproductive system, 

epididymis sperm concentration (Fig. 2A), sperm motility (Fig. 2B), and morphological 

abnormalities (Fig. 3) were analyzed on Days 7 and 28 after pharyngeal aspiration.

We found that BD50 exposure induced a significant 72% and 44% decrease in epididymis 

sperm concentration in contrast to the control on Days 7 and 28 postexposure, respectively 

(Fig. 2A). Exposure to D100 resulted in a significant reduction of sperm concentration by 

24% on Day 28 only.

Similarly, BD50 exhaust significantly diminished sperm motility by 34% and 19% when 

compared with the control on Days 7 and 28 postexposure, respectively (Fig. 2B), whereas 

D100 decreased the number of motile cells by 21% when compared with the control on Day 

7 postexposure only.

Sperm morphological examination demonstrated a significant 3.4-, 1.7-, and 1.4-fold 

increase in the number of abnormal thin/elongated heads, looping, and bent mid-piece tails 

versus control on Day 7 post-BD50 exposure, respectively (Fig. 3A). No significant changes 

were found on Day 7 after exposure to D100 exhaust. More pronounced morphological 

abnormalities were found on Day 28 postexposure in both D100- and BD50-treated mice 

(Fig. 3B). Thus, significant 2.2- and 1.4-fold increase in the number of abnormal thin/

elongated and club-shaped heads, respectively, over control were detected only after 

exposure to BD50. Additionally, BD50 induced significant twofold and 2.4-fold rises over 

the control in the number of looping and bent mid-piece tails, whereas D100 exposure 

increased up to 1.65- and 1.6-fold when compared with control mice, respectively.

Interestingly, effect of BD50 induced significantly stronger changes in sperm concentration 

and morphological abnormalities only on Day 28 postexposure, whereas alterations in 

motility of the sperm were more pronounced throughout the time course of the experiment 

when compared with D100.

 Testicular Cytokines Following BD50 or D100 Exhaust Exposures

The release of proinflammatory cytokines in the testes of mice exposed to BD50 and D100 

exhaust are shown in Table II. IL-1α, IL-1β, and TNF-α were upregulated after exposure to 

BD50 or D100 (Day 7 post-treatment). The elevation of TNF-1α was found to be 

significantly stronger in BD50 when compared with that of D100. The levels of IL-6 in both 

groups were not different from the control.

 Testicular Testosterone Level

The testosterone concentration in the testes homogenates was measured after pharyngeal 

aspiration of BD50 or D100 exhaust particulates on Days 7 and 28 postexposure (Fig. 4A). 

A significant 19% augmentation in testicular testosterone level was found in the BD50 group 

on Day 7 postexposure, which progressed further (86% over control) by Day 28. No 

significant changes were found after exposure to D100. Moreover, the elevation of 

testosterone concentration was found to be significantly stronger in BD50 when compared 

with that of D100.
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 Serum Luteinizing Hormone Concentration

We investigated the serum concentration of LH in mice on Days 7 and 28 postexposure with 

BD50 or D100 exhaust particulate. Serum concentrations of LH in the BD50 exposure group 

were significantly decreased by 21% and 19% on Days 7 and 28 post-treatment, 

respectively, when compared with the control group (Fig. 4B). Exposure to D100 exhaust 

particulate did not induce significant depletion of LH in serum when compared with the 

control group. The results from BD50 exposure were not significantly different when 

compared with D100.

 Histological Evaluation

Formalin-fixed, paraffin-wax embedded testes sections stained with H&E were examined 

microscopically. Normal architecture of seminiferous tubules and orderly spermatogenesis 

were detected in the testes from control mice on Days 7 and 28 postexposure. Additionally, 

no histopathological changes were observed in Leydig or Sertoli cells (Fig. 5A). Sections of 

D100 and BD50 groups on Day 7 postexposure showed no significant pathologic alterations. 

However, on Day 28 postexposure, sections of D100 group showed interstitial edema and 

occasional dystrophic seminiferous tubules with arrested spermatogenesis and the presence 

of degenerating spermatocytes (Fig. 5B). These histologic changes were even more 

prominent in BD50 group, where dystrophic seminiferous tubules were clustering, especially 

in subcapsular areas (Fig. 5C).

 DNA Damage

The sperm chromatin structure abnormalities were measured in the cells derived from the 

caudal epididymis of mice on Days 7 and 28 postexposure to BD50 or D100 using SCSA. 

The levels of DNA fragmentation were significantly increased by 1.5- and 1.9-fold in the 

samples from D100- and BD50-exposed mice, respectively, only on Day 7 post-treatments 

(Fig. 6). Furthermore, the level of DNA fragmentation was found to be significantly stronger 

in BD50 when compared with that of D100. No changes in DNA fragmentation were found 

on Day 28 postexposure in either the BD50 or the D100 samples.

 DISCUSSION

Oxidative stress has been implicated in numerous diseases such as cancer, connective tissue 

disorders, aging, infection, inflammation, acquired immunodeficiency syndrome, and male 

infertility [Agarwal and Said, 2005; Benedetti et al., 2012; Guerriero et al., 2014]. Seminal 

reactive oxygen species (ROS) were increased in a large proportion of infertile men, 

demonstrating that oxidative stress may be a major cause of male infertility [Pasqualotto et 

al., 2001; Agarwal and Said, 2005]. Oxidative stress results from the imbalance between 

production of the ROS and the protective effect of the antioxidant system responsible for 

their neutralization and removal. An excess of ROS causes a pathological reaction resulting 

in cell and tissue damage.

Spermatozoa are the most susceptible to the harmful effects of ROS due to the large amounts 

of unsaturated fatty acids that can be oxidized (lipid peroxidation) in their cell membrane. 

The lipid peroxidation process leads to a loss of membrane integrity and an increase in its 
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permeability, inactivation of cellular enzymes, and structural DNA damage. The overall 

consequence is reduced sperm count and activity, decreased motility, abnormal morphology, 

and impaired function [Walczak–Jedrzejowska et al., 2013].

As biodiesel/diesel blend exhaust is composed of a combination of PAHs and FAMEs 

combustion products, we hypothesized that BD50 exhaust particulate could induce adverse 

effects on male reproductive function because of its ability to cause oxidative damage. As 

previously reported, DEPs disrupt male reproductive function resulting in reduction of daily 

sperm production and motility, increased morphological sperm abnormalities, ultrastructural 

changes in Leydig cells, elevation of serum testosterone, and reduction of LH level 

[Watanabe and Oonuki, 1999; Yoshida et al., 1999; Tsukue et al., 2001, 2002; Yoshida and 

Takeda, 2004; Izawa et al., 2007, 2008; Li et al., 2007, 2009b, 2012; Ramdhan et al., 2009]. 

Human exposure to PAHs causes modification to male sperm quality, including morphology, 

concentration, and vitality, as well as causing DNA damage in sperm, thus affecting male 

reproductive function [Gaspari et al., 2003; Meeker et al., 2007; Han et al., 2011; Jeng et al., 

2013]. Some PAHs, such as benzo(a)pyrene, fluoranthene, or benzo(ghi)perylene 

(chemically reactive and nonvolatile), are emitted at greater levels in biodiesel than diesel 

exhaust [Kado et al., 1996] and are well-known endocrine disrupters [Raychoudhury and 

Kubinski, 2003]. Nitro-PAHs, such as 4-nitro-3-phenylphenol, have been shown to induce 

lipid peroxidation and decrease both superoxide dismutase and glutathione peroxidase 

(GSH-Px) activity [Mi et al., 2010].

Recent publications demonstrate that biodiesel and its blend (BD50) particles promote more 

pronounced cardiovascular alterations, as well as pulmonary and systemic inflammation, 

than diesel [Brito et al., 2010]. Moreover, Shvedova et al. [2013] and Yanamala et al. [2013] 

showed that pharyngeal aspiration or inhalation exposure to BD exhaust causes pulmonary 

damage accompanied by a robust inflammatory responses and severe oxidative stress. These 

studies suggest that BD aerosols might produce greater adverse effects when compared with 

D100 exposure. Furthermore, very recent publications, including our own, demonstrate that 

biodiesel or its blends are more mutagenic and increase formation of multinucleated cells 

when compared with ultralow sulfur diesel fuel [Ackland et al., 2007; Bunger et al., 2007; 

Krahl et al., 2009; Kisin et al., 2013]. These effects are most likely attributed to the greater 

levels of PAHs and nPAHs in the exhaust, which are potent mutagens and carcinogens 

[Tokiwa and Ohnishi, 1986]. To the best of our knowledge, the current study is the first to 

report adverse effects of biodiesel or its blends exhaust on male reproductive function.

The major components of BD fuels are monounsaturated oleic, polyunsaturated linoleic, and 

linolenic acids that are prone to oxidation on combustion, causing the formation of peroxides 

and a variety of secondary oxidation products [Song et al., 2000; Knothe, 2005]. On the 

other hand, reactive metabolites of PAHs can be oxidized, enter redox cycles, and increase 

the formation of ROS [Farmer et al., 2003]. Oxidative stress is known to play a crucial role 

in the etiology of defective sperm function via a mechanism involving the induction of 

peroxidative damage to the plasma membrane [Aitken et al., 2014]. An increase in 

intracellular ROS levels has been shown to damage tissue and cells. Similarly, in earlier 

studies [Shvedova et al., 2013; Yanamala et al., 2013], we found greater oxidative stress 

after exposure to BD50 than D100 exhaust. The susceptibility of epididymal spermatozoa to 
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the existing oxidative stress observed in the testes is not unexpected due to the fact that 

spermatozoa are uniquely rich in polyunsaturated fatty acids [Guerriero et al., 2014]. The 

latter are susceptible to free radical attack generating lipid peroxidation chain reactions that 

culminate in electrophilic lipid aldehydes such as 4-HNE or acrolein. These products of lipid 

peroxidation are also capable of triggering ROS generation by sperm mitochondria [Aitken 

et al., 2012], thus showing that oxidative stress in spermatozoa is a self-propagating cycle 

that, once initiated, will inevitably lead to oxidative damage, a loss of functionality, and cell 

death [Aitken et al., 2014]. In the current study, greater accumulation of lipid peroxidation 

products (HNE-His adduct) and depletion of a major antioxidant, GSH, were found in the 

testes of BD50 exhaust-exposed mice when compared with D100 (Fig. 1). This oxidant/

antioxidant imbalance found in the BD50-exposed mice correlated well with the impairment 

of sperm characteristics demonstrated (Figs. 2, 3, and Fig. 7). A pronounced reduction of 

sperm motility and amplification of morphological abnormalities on pulmonary exposure to 

BD50 exhaust particulates when compared with D100 was found throughout the 

postexposure time course. This is also in agreement with previous studies [Saleh and 

Agarwal, 2002; El-Demerdash et al., 2004; Aitken and Curry, 2011; Aitken et al., 2012], 

showing that increased sperm membrane lipid peroxidation inhibits sperm progress motility, 

increases the percent of total sperm abnormalities, and causes a decrease in the fertilizing 

potential of sperm (Fig. 7). Experiments involving exposure of mammalian spermatozoa to a 

variety of ROS using a xanthine oxidase ROS-generating system demonstrate the 

vulnerability of sperm motility to oxidative stress and identify hydrogen peroxide as the 

most cytotoxic metabolite [Awda et al., 2009; Martinez-Pastor et al., 2009]. Moreover, it has 

been shown that H2O2 inhibits activity of the glucose-6-phosphate dehydrogenase (G6PD) 

leading to a decrease in the availability of NADPH and accumulation of oxidized/reduced 

glutathione, thus reducing antioxidant defense properties of the spermatozoa [Griveau et al., 

1995]. Furthermore, GSH deficiency is involved in the instability of the mid-piece of sperm 

and the shape of the sperm resulting in defective motility [Garrido et al., 2004]. In keeping 

with this, we found GSH depletion and augmentation of the instability of the mid-piece and 

the shape of the sperm in the BD50 exhaust-exposed samples (Figs. 1, 3, and 7).

Exposure to BD50, not D100, exhaust enhanced testosterone secretion in testes and 

decreased LH level in the serum (Fig. 4). In addition, testicular histopathology analysis 

showed more prominent changes in the seminiferous tubules after exposure to BD50 (Fig. 

5). In line with our findings, previous publications reported an increase in testicular 

concentration of testosterone and induction of degeneration of tubules after exposure to 

nanoparticlerich diesel exhaust [Li et al., 2012]. These results suggest that nanoparticles 

affect testosterone biosynthesis and might have a causal role in steroidogenesis in the testis. 

Testosterone is mainly synthesized in the Leydig cells of the testes, and LH is the major 

stimulant of testosterone production [Ewing et al., 1983]. However, a high level of 

testosterone suppresses systemic levels of LH by a negative feedback loop and inhibits the 

release of gonadotropin-releasing hormone (GnRH) and consequently LH [Shibata et al., 

2007]. Additionally, IL-1β, detected in the serum of mice (Table I), also plays an important 

role in the suppression of GnRH secretion [Tomaszewska-Zaremba and Herman, 2009] and 

thus altered circulatory LH levels in our study.
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Apart from the influence on peroxidation of the cell membrane lipids, ROS can also cause 

damage to DNA and may lead to apoptosis through DNA fragmentation (Fig. 7). Oxidative 

stress has been correlated with high frequencies of single and double DNA strand breaks 

[Aitken and Krausz, 2001]. Kemal Duru et al. [2000] reported that exposure of the sperm to 

artificially produced ROS increased DNA damage in the form of modification of all bases, 

production of base-free sites, deletion, DNA crosslinks, and chromosomal rearrangements. 

High levels of ROS mediate the DNA fragmentation commonly observed in spermatozoa of 

infertile males [Aitken et al., 1998; Saleh and Agarwal, 2002]. We found significantly 

increased degree of DNA fragmentation on BD50 exhaust exposure in comparison with 

D100 on Day 7 post-treatment, indicating a higher population of cells with DNA damage 

(Figs. 6 and 7). The absence of DNA damage on Day 28 postexposure could be due to 

induction of nucleotide excision repair. Verhofstad et al. [2010] exposed male mice to 

benzo(a)pyrene to study DNA adduct kinetics in sperm and testis. The maximum adduct 

level in sperm was observed at about 1 week postexposure with a subsequent decrease in the 

following 3 weeks. The use of DNA repair-deficient mice allowed the authors to conclude 

that DNA damage in spermatogonia relies on nucleotide excision repair for maintaining its 

genetic integrity [Verhofstad et al., 2010].

Despite the often contradictory results from multiple clinical and experimental studies 

regarding the effects of cytokines on sperm quantity and quality, various cytokines are 

involved in the regulation of gonad and sperm function [Fraczek et al., 2012]. Moreover, 

cytokines may play a crucial role in propagation of oxidative stress in semen, especially 

during the inflammatory process (Fig. 7). It was reported that the addition of TNF-α, IL-1α, 

or IL-1β to human spermatozoa resulted in an increase of ROS production by a rise of sperm 

membrane peroxidation [Buch et al., 1994]. A number of authors observed a relationship 

between the increased secretion of cytokines in the testes or semen and abnormality or 

fertilizing ability of sperm [Fraczek et al., 2012]. It was shown that increased levels of TNF-

α or IL-1β were related to the quality of semen, such as sperm count, motility, and 

morphology [Gruschwitz et al., 1996; Sanocka et al., 2003; Al-Azemi et al., 2010]. In 

agreement with the previous studies, we found that exposure to BD50 or D100 induced 

upregulation of IL-1α, IL-1β, and TNF-α in the testes of mice with a stronger effect of 

BD50 (Table II and Fig. 7). Moreover, among the various inflammatory cytokines, TNF-α is 

the most potent inducer of apoptosis in spermatozoa [Li et al., 2009a]. Furthermore, we 

found that pulmonary exposure to BD50 induced enhanced systemic inflammation measured 

by the release of inflammatory mediators in the serum of mice (Table I) when compared 

with D100. Importantly, accumulation of TNF-α, IL-1α, and IL-1β proinflammatory 

cytokines was found only in mice exposed to BD exhaust. Additionally, the level of IL-6 was 

greater in B50 samples. These potent proinflammatory cytokines, especially IL-1β, are likely 

to play a central pathophysiological role in the inhibition of the neuroendocrine reproductive 

axis [Tomaszewska-Zaremba and Herman, 2009]. Interestingly, only the IL-1β level was 

significantly upregulated on Day 28 postexposure in BD50 samples (data not shown). Most 

upregulated cytokines found in the current study are similar to those reported by Yanamala 

et al. [2013] and clearly indicate that BD50 particles can potentiate distinct and prolonged 

systemic inflammatory responses. Several authors suggested an involvement of sperm 

apoptosis in the impairment of men’s fertility [Fraczek et al., 2012]. Induction of sperm 
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apoptosis could be one of the mechanisms by which proinflammatory cytokines may affect 

spermatozoa during male reproductive system inflammation (Fig. 7).

Overall, our data suggest that systemic outcomes of pulmonary exposure to respirable 

exhaust PM, leading to male reproductive toxicity, were more pronounced in BD50 when 

compared with D100. The chain of pathological events was realized through synergized 

interactions of oxidative stress and inflammatory response culminating in the impairment of 

sperm quality, functions, and DNA damage (Fig. 7).
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Fig. 1. 
The degree of oxidative stress evaluated by HNE-His adduct (A) and GSH (B) in the testes 

of C57BL6 mice on Days 7 and 28 after repeated exposure to D100 or BD50 exhaust 

particles. Mice were exposed via pharyngeal aspiration (15 µg/mouse/day of total carbon, 

twice a week for 2 weeks). Black columns: 7 days after last repeated exposure to BD50 or 

D100 exhaust particulate; and clear columns: 28 days after last repeated exposure to BD50 

or D100 exhaust particulate. Data are presented as percent of control. Means ± SE (n = 10 

mice per group). Significantly different from *controls (P < 0.05) and αD100 exhaust 

particulate-exposed group (P < 0.05).
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Fig. 2. 
Concentration (A) and motility (B) of epididymal sperm from C57BL6 mice on days 7 and 

28 after repeated exposure to D100 or BD50 combustion exhaust particles. Mice were 

exposed to exhaust particles via pharyngeal aspiration (15 µg/mouse/day of total carbon, 

twice a week for 2 weeks). Black columns: 7 days after last repeated exposure to BD50 or 

D100 exhaust particulate; and clear columns: 28 days after last repeated exposure to BD50 

or D100 exhaust particulate. Means ± SE (n = 10 mice per group). Significantly different 

from *controls (P < 0.05) and αD100 exhaust particulate-exposed group (P < 0.05).
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Fig. 3. 
Morphological abnormalities of epididymal sperm from C57BL6 mice on Days 7 and 28 

postrepeated exposure to D100 or BD50 combustion exhaust particles. (A) Day 7 and (B) 

Day 28 postexposure to combustion exhaust particles. Mice were exposed to exhaust 

particles via pharyngeal aspiration (15 µg/mouse/day of total carbon, twice a week for 2 

weeks). Black columns: control mice; gray columns: mice exposed to D100 exhaust 

particulate; and clear columns: mice exposed to BD50 exhaust. Data presented as percent of 

abnormal cells population when compared with total number of sperm. Means ± SE (n = 10 

mice per group). Significantly different from *controls (P < 0.05) and αD100 exhaust 

particulate-exposed group (P < 0.05).
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Fig. 4. 
Testicular testosterone (A) and serum LH (B) levels in C57BL6 mice on Days 7 and 28 after 

repeated exposure to D100 or BD50 exhaust particulate. Mice were exposed to exhaust 

particles via pharyngeal aspiration (15 µg/mouse/day of total carbon, twice a week for 2 

weeks). Black columns: 7 days after last repeated exposure to BD50 or D100 exhaust 

particulate; and clear columns: 28 days after last repeated exposure to BD50 or D100 

exhaust particulate. Data presented as percent of control. Means ± SE (n = 10 mice per 

group). Significantly different from *controls (P < 0.05) and αD100 exhaust particulate-

exposed group (P < 0.05).
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Fig. 5. 
Light micrographs of H&E stained sections from testes of mice 28 days after pharyngeal 

aspiration of D100 or BD50 (cumulative dose 60 mg per mouse): (A) control mice, (B) mice 

exposed to D100, and (C) mice exposed to BD50. Sections of D100 group showed 

interstitial edema and occasional dystrophic seminiferous tubules with arrested 

spermatogenesis and the presence of degenerating spermatocytes (arrows). These histologic 

changes were more prominent in BD50 group, where dystrophic seminiferous tubules were 

clustering, especially in subcapsular areas (arrows).
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Fig. 6. 
DNA damage of epididymal sperm from C57BL6 mice on Days 7 and 28 postrepeated 

exposure to D100 or BD50 exhaust particles. Mice were exposed to exhaust particles via 

pharyngeal aspiration (15 µg/ mouse/day of total carbon, twice a week for 2 weeks). Black 

columns: 7 days after last repeated exposure to BD50 or D100 exhaust particulate; and clear 

columns: 28 days after last repeated exposure to BD50 or D100 exhaust particulate. Data 

presented as percent of control. Means ± SE (n = 10 mice per group). Significantly different 

from *controls (P < 0.05) and αD100 exhaust particulate-exposed group (P < 0.05).
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Fig. 7. 
A schematic representation of several biological effects associated with inflammation, 

oxidative stress, and male infertility. This figure illustrates how enhanced oxidative stress 

can cause changes at different levels in the male reproductive system, leading to infertility. 

The precise mechanisms that are modulated/effected on BD50 particulate exposure in male 

mice are highlighted in red colored font.
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TABLE I

Differential Responses in Serum Cytokines on Day 7 Post Repeated Exposure to Diesel (D100) or Biodiesel 

Blend (BD50) Exhaust Particulates

pg/ml Control D100 BD50

IL-1α 17.4 ± 1.3 19.9 ± 1.4 21.0 ± 1.1a

IL-1β 153.2 ± 24.6 213.8 ± 19.7 220.8 ± 14.4a

IL-6 21.2 ± 1.7 27.8 ± 2.9a 33.4 ± 3.0a

TNF-α 295.5 ± 16.6 354.3 ± 31.5 470.4 ± 37.0ab

a
P<0.05, vs control.

b
P<0.05, vs D100 exposure.
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TABLE II

Differential Responses in Testicular Cytokines on Day 7 Post Repeated Exposure to Diesel (D100) or 

Biodiesel (BD50) Exhaust Particulates

pg/mg protein Control D100 BD50

IL-1α 0.9 ± 0.0 1.3 ± 0.1a 1.3 ± 0.0a

IL-1β 8.8 ± 0.7 13.2 ± 0.9a 12.3 ± 0.4a

IL-6 1.1 ± 0.1 0.9 ± 0.1 1.0 ± 0.0

TNF-α 18.7 ± 1.2 23.2 ± 0.9a 25.6 ± 0.6ab

a
P<0.05, vs control.

b
P<0.05, vs D100 exposure.
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